Вконтакте Facebook Twitter Лента RSS

Интенсивность отказов выражается в. Интенсивность отказов - зависимость интенсивности отказов от времени (кривая жизни изделия). Модель надежности системы с множественными отказами

При рассмотрении законов распределения отказов было выяснено, что интенсивности отказов элементов могут быть либо постоянными, либо меняться в зависимости от времени эксплуатации. Для систем длительного использования, к которым относятся все транспортные системы, предусматри­вается профилактическое обслуживание, что практически исключает влияние износовых отказов, поэтому возникают только внезапные отказы.

Это в значительной мере упрощает расчет надежности. Однако сложные системы состоят из множества элементов, соединенных различным способом. Когда система находится эксплуатации, некоторые ее элементы работают непрерыв­но, другие - только в определенные промежутки времени, третьи - выполняют лишь короткие операции включения или подключения. Следовательно, в течение заданного промежут­ка времени лишь у части элементов время работы совпадает со временем работы системы, другие же работают более ко­роткое время.

В этом случае для расчета наработки заданной системы рассматривается только время, в течение которого элемент включен; такой подход возможен, если допустить, что в те­чение периодов, когда элементы не включены в работу систе­мы, их интенсивность отказов равна нулю.

С точки зрения надежности наиболее распространена схе­ма последовательного соединения элементов. В этом случае при расчете используется правило произведения надежностей:

где R (t i) - надежность i-го элемента, который включается на t i часов из общего времени работы системы t ч .


Для расчетов может быть использован так называемый

коэффициент занятости, равный

т. е. отношению вре­мени работы элемента ко времени работы системы. Практи­ческий смысл этого коэффициента состоит в том, что для элемента с известной интенсивностью отказов интенсив­ность отказов в системе с учетом времени работы будет равна

Такой же подход может быть использован по отношению к отдельным узлам системы.

Другим фактором, который следует учитывать при ана­лизе надежности системы, является уровень рабочей нагруз­ки, с которой элементы работают в системе, так как он в значительной мере определяет величину ожидаемой интен­сивности отказов.

Интенсивность отказов элементов существенно меняется даже при небольших изменениях рабочей нагрузки, воздей­ствующей на них.

В данном случае основное затруднение при расчете вызы­вается многообразием факторов, определяющий как понятие прочности элемента, так и понятие нагрузки.

Прочность элемента объединяет его сопротивление меха­ническим нагрузкам, вибрациям, давлению, ускорению и т. д. К категории прочности относятся также сопротивления тепло­вым нагрузкам, электрическая прочность, влагостойкость, стой­кость против коррозии и ряд других свойств. Поэтому проч­ность не может быть выражена некоторой числовой величиной и нет единиц измерения прочности, учитывающих все эти фак­торы. Также многообразны проявления нагрузки. Поэтому для оценки прочности и нагрузки используются статистические методы, с помощью которых определяется наблюдаемый эффект отказа элемента во времени под действием ряда на­грузок или под действием преимущественной нагрузки.

Элементы проектируются так, чтобы они могли выдержать номинальные нагрузки. При эксплуатации элементов в усло­виях номинальных нагрузок наблюдается определенная за­кономерность интенсивности их внезапных отказов. Эта ин­тенсивность называется номинальной интенсивностью вне­запных отказов элементов, и она является исходной величи­ной для определения действительной интенсивности внезап­ных отказов реального элемента (с учетом времени работы и рабочей нагрузки).

Для реального элемента или системы в настоящее время учитываются три основных воздействия окружающей среды: механические, тепловые и рабочие нагрузки.

Влияние механических воздействий учитывается коэффи­циентом , величина которого определяется местом уста­новки аппаратуры, и может быть принята равной:

для лабораторий и благоустроенных помещений - 1

, стационарных наземных установок - 10

, железнодорожного подвижного состава - 30.

Номинальная интенсивность внезапных отказов, выбран­ная по

табл. 3, должна быть увеличена в раз в зависи­мости от места установки аппарата в эксплуатации.

Кривые рис. 7 иллюстрируют общий характер изменения интенсивности внезапных отказов электрических и электронных элементов в зависимости от температуры нагрева и ве­личины рабочей нагрузки.

Интенсивность внезапных отказов с увеличением рабочей нагрузки,как видно из приведенных кривых, возрастает по логарифмическому закону. Из этих кривых также видно, каким образом можно уменьшить интенсивность внезапных отказов элементов даже до величины, меньшей номинального значения. Существенное сокращение интенсивности внезап­ных отказов достигается в том случае, если элементы рабо­тают при нагрузках ниже номинальных значений.


Рис. 16

Рис. 7 может быть использован при проведении ориенти­ровочных (учебных) расчетов надежности любых электрических и электронных элементов. Номинальному режиму в этом случае соответствует температура 80°С и 100% рабочей на­грузки.

Если расчетные параметры элемента отличаются от но­минальных значений, то по кривым рис. 7 может быть опре­делено увеличение для выбранных параметров и получено отношение на которое и умножается величина интен­сивности отказов рассматриваемого элемента.

Высокая надежность может быть заложена при проекти­ровании элементов и систем. Для этого необходимо стре­миться к уменьшению температуры элементов при работе и применять элементы с повышенными номинальными парамет­рами, что равносильно снижению рабочих нагрузок.

Увеличение стоимости изготовления изделия в любом слу­чае окупается за счет сокращения эксплуатационных рас­ходов.


Интенсивность отказов для элементов электрических це­-
пей в зависимости от нагрузки может быть определена так­
же по эмпирическим формулам. В частности, в зависимости
от рабочего напряжения и температуры

Табличное значение при номинальном напряжении и температуре t i .

- интенсивность отказов при рабочем напряжении U 2 и температуре t 2 .

Предполагается, что механические воздействия остаются на прежнем уровне. В зависимости от вида и типа элементов значение п, меняется от 4 до 10, а значение К в пределах 1,02 1,15.

При определении реальной интенсивности отказов эле­ментов необходимо хорошо представлять величину ожидае­мых уровней нагрузок, при которых элементы будут рабо­тать, рассчитать величины электрических и тепловых пара­метров с учетом переходных режимов. Правильное выявле­ние нагрузок, воздействующих на отдельные элементы, при­водит к значительному повышению точности расчета надеж­ности.

При расчете надежности с учетом износовых отказов не­обходимо также учитывать условие эксплуатации. Значения долговечности М, приведенные в табл. 3, так же как и относятся к номинальному режиму нагрузки и лабора­торным условиям. Все элементы, работающие в других условиях, имеют долговечность, отличающуюся от ной на величину К Величина К может быть принята равной:

для лаборатории - 1,0

, наземных установок - 0,3

, железнодорожного подвижного состава - 0,17

Небольшие колебания коэффициента К возможны для аппаратуры различного назначения.

Для определения ожидаемой долговечности М необхо­димо среднюю (номинальную) долговечность, определенную по таблице, умножить на коэффициент К .

При отсутствии материалов, необходимых для определе­ния интенсивности отказов в зависимости от уровней нагруз­ки, может быть использован коэффициентный метод расчета интенсивности отказов.

Сущность коэффициентного метода расчета сводится к тому, что при расчете критериев надежности аппаратуры используются коэффициенты, связывающие интенсивность отказов элементов различных типов с интенсивностью отказов элемента, характеристики надежности которого достоверно известны.

Предполагается, что справедлив экспоненциальный закон надежности, а интенсивности отказов элементов всех типов изменяются в зависимости от условий эксплуатации в одина­ковой степени. Последнее допущение означает, что при раз­личных условиях эксплуатации справедливо соотношение

Интенсивность отказов элемента, количественные ха­рактеристики которого известны;

Коэффициент надежности i-го элемента. Элемент с интенсивностью отказов ^ 0 называется основным элементом расчета системы. При вычислении коэффи­циентов K i за основной элемент расчета системы прини­мается проволочное_нерегулируемое сопротивление. В данном случае для расчета надежности системы не требуется знать интенсивность отказа элементов всех типов. Достаточно знать лишь коэффициенты надежности K i , число элементов в схе­ме и интенсивность отказов основного элемента расчета Так как K i имеет разброс значений, то надежность прове­ряется как для К min , так и для К мах. Значения K i , опреде­ленные на основании анализа данных по интенсивностям отказов, для аппаратуры различного назначения приведены в табл. 5.

Таблица 5

Интенсивность отказов основного элемента расчета (в дан­ном случае сопротивления) следует определять как средне­взвешенное значение интенсивностей отказов сопротивлений, применяемых в проектируемой системе, т. е.

И N R - интенсивность отказов и количество сопро­тивлений i-го типа и номинала;

т - число типов и номиналов сопротивлений.

Построение результирующей зависимости надежности си­стемы от времени эксплуатации желательно производить как для значений К min , так и для К мах

Располагая сведениями о надежности отдельных элемен­тов, входящих в систему, можно дать общую оценку надежности системы и определить блоки и узлы, требующие даль­нейшей доработки. Для этого исследуемая система разби­вается на узлы по конструктивному либо смысловому при­знаку (составляется структурная схема). Для каждого вы­бранного узла определяется надежность (узлы, имеющие меньшую надежность требуют доработки и усовершенствова­ния в первую очередь).

При сравнении надежности узлов, а тем более различных вариантов систем, следует помнить, что абсолютная величина надежности не отражает поведения системы в эксплуатации и ее эффективности. Одна и та же величина надежности си­стемы может быть достигнута в одном случае за счет основ­ных элементов, ремонт и смена которых требует значительного времени и больших материальных затрат (для электровоза-отстранение от поездной работы), в другом случае это мелкие элементы, смена которых производится обслужи­вающим персоналом без отстранения машины от работы. Поэтому для сравнительного анализа проектируемых систем рекомендуется сравнивать надежности элементов, аналогич­ных по своему значению и последствиям, возникающим в ре­зультате их отказов.

При ориентировочных расчетах надежности можно поль­зоваться данными опыта эксплуатации аналогичных систем. что в какой-то мере учитывает условия эксплуатации. Расчет в этом случае может осуществляться двумя путями: по сред­нему уровню надежности однотипной аппаратуры или покоэффициенту пересчета к реальным условиям эксплуатации.

В основе расчета по среднему уровню надежности лежит предположение, что проектируемой аппаратуры и эксплуа­тируемого образца равны. Это можно допустить при одина­ковых элементах, аналогичных системах и одинаковом со­отношении элементов в системе.

Сущность метода состоит в том, что

И - число элементов и наработка на отказ аппаратуры - образца;

И - то же проектируемой аппаратуры. Из данного соотноше-ния легко определить наработку на отказ для проектируемой ап-паратуры:

Достоинство метода - простота. Недостатки - отсутствие, как правило, образца эксплуатируемой аппаратуры, пригод­ного для сравнения с проектируемым устройством.

В основе расчета по второму способу лежит определение коэффициента пересчета, учитывающего условия эксплуата­ции аналогичной аппаратуры. Для его определения выби­рается аналогичная система, эксплуатируемая в заданных условиях. Остальные требования могут не соблюдаться. Для выбранной эксплуатируемой системы определяются показатели надежности с использованием данных табл. 3, отдельно определяются те же показатели по эксплуатационным данным.

Коэффициент пересчета определяется как отношение

- наработка на отказ по данным эксплуатации;

Т оз - наработка на отказ по расчету.

Для проектируемой аппаратуры расчет показателей на­дежности производится с использованием тех же табличных данных, что идля эксплуатируемой системы. После чего полученные результаты умножаются на К э.

Коэффициент К э учитывает реальные условия эксплуатации,- профилактические ремонты и их качество, замены де­талей между ремонтами, квалификацию обслуживающего персонала, состояние оборудования депо и т. д., чего нельзя предусмотреть при других способах расчета. Значения К э могут быть и больше единицы.

Любой из рассмотренных методов расчета может быть произведен на заданную надежность, т. е. методом от про­тивного - от надежности системы и наработки на отказ к выбору показателей составляющих элементов.

Интенсивностью отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к среднему числу образцов, исправно работающих в данный отрезок времени при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Эта характеристика обозначается .Согласно определению

где n(t) – число отказавших образцов в интервале времени от до ; – интервал времени, - среднее число исправно работающих образцов в интервале ; N i - число исправно работающих образцов в начале интервала , N i +1 – число исправно работающих образцов в конце интервала .

Выражение (1.20) является статистическим определением интенсивности отказов. Для вероятностного представления этой характеристики установим зависимость между интенсивностью отказов, вероятностью безотказной работы и частотой отказов.

Подставим в выражение (1.20) выражение для n(t) из формул (1.11) и (1.12). Тогда получим:

.

Учитывая выражение (1.3) и то, что N ср = N 0 – n(t), найдем:

.

Устремляя к нулю и переходя к пределу, получим:

. (1.21)

Интегрируя выражение (1.21), получим:

Так как , то на основании выражения (1.21) получим:

. (1.24)

Выражения (1.22) – (1.24) устанавливают зависимость между вероятностью безотказной работы, частотой отказов и интенсивностью отказов.


Выражение (1.23) может быть вероятностным определением интенсивности отказов.

Интенсивность отказов как количественная характеристика надежности обладает рядом достоинств. Она является функцией времени и позволяет наглядно установить характерные участки работы аппаратуры. Это может позволить существенно повысить надежность аппаратуры. Действительно, если известны время приработки (t 1) и время конца работы (t 2), то можно разумно установить время тренировки аппаратуры до начала ее экс

плуатации и ее ресурс до ремонта. Это позволяет уменьшить число отказов при эксплуатации, т.е. приводит, в конечном счете, к повышению надежности аппаратуры.

Интенсивность отказов как количественная характеристика надежности имеет тот же недостаток, что и частота отказов: она позволяет достаточно просто характеризовать надежность аппаратуры лишь до первого отказа. Поэтому она является удобной характеристикой надежности систем разового применения и, в частности, простейших элементов.

По известной характеристике наиболее просто определяются остальные количественные характеристики надежности.

Указанные свойства интенсивности отказов позволяют ее считать основной количественной характеристикой надежности простейших элементов радиоэлектроники.

Различают три вида отказов:

· обусловленные скрытыми ошибками в конструкторско-технологической документации и производственными дефектами при изготовлении изделий;

· обусловленные старением и износом радио- и конструкционных элементов;

· обусловленные случайными факторами различной природы.

Для оценки надежности систем введены понятия «работоспособность» и «отказ».

Работоспособность и отказы. Работоспособность - это состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями технической документации. Отказ – событие, приводящее к полной или частичной утрате работоспособности изделия. По характеру изменения параметров аппаратуры отказы подразделяют на внезапные и по­степенные.

Внезапные (катастрофические) отказы характеризуются скачкообразным изменением одного или нескольких параметров аппаратуры и возникают в результате внезапного изменения одного или нескольких параметров элементов, из которых построена РЭА (обрыв или короткое замыкание). Устранение внезапного отказа производят заменой отказавшего элемента исправным или его ремонтом.

Постепенные (параметрические) отказы характеризуются изменением одного или нескольких параметров аппаратуры с течением времени. Они возникают в результате постепенного изменения параметров элементов до тех пор, пока значение одного из параметров не выйдет за некоторые пределы, определяющие нормальную работу элементов. Это может быть последствием старения элементов, воздействия колебаний температуры, влажности, давления, механических воздействий, и т.п. Устранение постепенного отказа связано либо с заменой, ремонтом, регулировкой параметров отказавшего элемента, либо с компенсацией за счет изменения параметров других элементов.

По взаимосвязи между собой различают отказы независимые, не свя­занные с другими отказами, и зависимые. По повторяемости возникновения отказы бывают одноразовые (сбои) и перемежающиеся. Сбой - однократно возникающий самоустраняющийся отказ, перемежающийся - многократно возникающий сбой одного и того же характера.

По наличию внешних признаков различают отказы явные - имею­щие внешние признаки появления, и неявные (скрытые), для обна­ружения которых требуется провести определенные действия.

По причине возникновения отказы подразделяют на конструкцион­ные, производственные и эксплуатационные, вызванные нарушением уста­новленных норм и правил при конструировании, производстве и эксплуата­ции РЭА.

По характеру устранения отказы делятся на устойчивые и самоустра­няющиеся. Устойчивый отказ устраняется заменой отказавшего элемента (модуля), а самоустраняющийся исчезает сам, но может повториться. Само­устраняющийся отказ может проявиться в виде сбоя или в форме переме­жающегося отказа. Отказ типа сбоя особенно характерен для РЭА. Появление сбоев обусловливается внешними и внутренними факторами.

К внешним факторам относятся колебания напряжения питания, вибрации, температурные колебания. Специальными мерами (стабилизации питания, амортизация, термостатирование и др.) влияние этих факторов может быть значительно ослаблено. К внутренним факторам относятся флуктуационные колебания параметров элементов, несинхронность работы отдельных устройств, внутренние шумы и наводки.

7.2. количественные характеристики Надежности

Надежность, как сочетание свойств безотказности, ремонтоспособности, долговечности и сохраняемости, и сами эти качества количественно характеризуются различными функциями и числовыми параметрами. Правильный выбор количественных показателей надежности РЭА позволяет объективно сравнивать технические характеристики различных изделий как на этапе проектирования, так и на этапе эксплуатации (правильный выбор системы элементов, технические обоснования работы по эксплуатации и ремонту РЭА, объем необходимого запасного имущества и др.).

Возникновение отказов носит случайный харак­тер. Процесс возникновения отказов в РЭА описывается сложными вероятностными законами. В инженерной практике для оценки надежности РЭА вводят количественные характеристики, основанные на обработке экспериментальных данных.

Безотказность изделий характеризуется

Вероятностью безотказной работы P(t) (характеризует скорость снижения надежности во времени),

Частотой отказов F(t),

Интенсивностью отказов l(t),

Средней наработкой на отказ Т ср.

Можно также надежность РЭА оценивать вероятностью отказа q(t) = 1 - P(t).

Рассмотрим оценку надежности неремонтируемых систем. Приведенные характеристики верны и для ремонтируемых систем, если их рассматривать для случая до первого отказа.

Пусть на испытания поставлена партия, содержащая N(0) изделий. В процессе испытаний к моменту времени t вышли из строя n изделий. Осталось исправными:

N(t) = N(0) – n.

Отношение Q(t) = n/N(0) является оценкой вероятности выхода из строя изделия за время t. Чем больше число изделий, тем точнее оценка надежности результатов, строгое выражение для которой выглядит следующим образом:

Величина P(t), равная

P(t) = 1 – Q(t)

называется теоретической вероятностью безотказной работы и характеризует вероятность того, что к моменту t не произойдет отказа.

Вероятность безотказной работы P(t) представляет собой вероятность того, что в пределах указанного периода времени t, отказ объекта не возникнет. Этот показатель определяется отношение числа элементов объекта, безотказно проработавших до момента времени t к общему числу элементов объекта, работоспособных в начальный момент.

Вероятность безотказной работы изделия может быть определена и для произвольного интервала времени (t 1 ; t 2) с момента начала эксплуатации. В этом случае говорят об условной вероятности P(t 1 ; t 2) в период (t 1 ; t 2) при рабочем состоянии в момент времени t 1 . Условная вероятность P(t 1 ; t 2) определяется отношением:

P(t 1 ; t 2) = P(t 2)/ P(t 1),

где P(t 1) и P(t 2) - соответственно значения вероятностей в начале (t 1) и конце (t 2) наработки.

Частота отказов. Значение частоты отказов за время t в данном опыте определяется отношением f(t) = Q(t)/t = n/(N(0)*t). В качестве показателя надежности неремонтируемых систем чаще используют производную по времени от функции отказа Q(t), которая характеризует плотность распределения наработки изделия до отказа f(t):

f(t) = dQ(t)/dt = - dP(t)/dt.

Величина f(t)dt характеризует вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в рабочем состоянии.

Интенсивность отказов. Критерием, более полно определяющим надежность неремонтируемой РЭА и ее модулей, является интенсивность отказов l(t). Интенсивность отказов l(t) представляет условную вероятность возникновения отказа в системе в некоторый момент времени наработки при условии, что до этого момента отказов в системе не было. Величина l(t) определяется отношением

l (t) = f(t)/P(t) = (1/P(t)) dQ/dt.

Интенсивность отказов l (t) - это число отказов n(t) элементов объекта в единицу времени, отнесенное к среднему числу элементов N(t) объекта, работоспособных к моменту времени t:

l (t)=n(t)/(N(t)*t), где

t - заданный отрезок времени.

Например: 1000 элементов объекта работали 500 часов. За это время отказали 2 элемента. Отсюда, l(t)=n(t)/(N*t)=2/(1000*500)=4*10-6 1/ч, т.е. за 1 час может отказать 4-е элемента из миллиона.

Надежность объекта, как системы, характеризуется потоком отказов l, численно равное сумме интенсивности отказов отдельных устройств:

По формуле рассчитывается поток отказов и отдельных устройств объекта, состоящих, в свою очередь, из различных узлов и элементов, характеризующихся своей интенсивностью отказов. Формула справедлива для расчета потока отказов системы из n элементов в случае, когда отказ любого из них приводит к отказу всей системы в целом. Такое соединение элементов называется логически последовательным или основным. Кроме, того, существует логически параллельное соединение элементов, когда выход их строя одного из них не приводит к отказу системы в целом. Связь вероятности безотказной работы P(t) и потока отказов l определяется:

P(t)=exp(-lt), очевидно, что 0

Показатели интенсивности отказов комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в табл. 1 приведена интенсивность отказов l(t) некоторых элементов.

Наименование элемента Интенсивность отказов, *10 -5, 1/ч
Резисторы 0,0001…1,5
Конденсаторы 0,001…16,4
Трансформаторы 0,002…6,4
Катушки индуктивности 0,002…4,4
Реле 0,05…101
Диоды 0,012…50
Триоды 0,01…90
Коммутационные устройства 0,0003…2,8
Разъемы 0,001…9,1
Соединения пайкой 0,01…1
Провода, кабели 0,01…1
Электродвигатели 100…600

Отсюда следует, что величина l(t)dt характеризует условную вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в работоспособном состоянии. Этот показатель характеризует на­дежность РЭА в любой момент времени и для интервала Δt i может быть вычислен по формуле:

l = Δn i /(N ср Δt i),

где Δn i = N i - N i+1 - число отказов; N c p = (N i + N i +1)/2 - среднее число работоспособных изделий; N i , и N i+1 - количество работоспособных изделий в начале и конце промежутка времени Δt i .

Вероятность безотказной работы связана с величинами l(t) и f(t) следующими выражениями:

P(t) = exp(- l(t) dt), P(t) = exp(- f(t) dt)

Зная одну из характеристик надежности P(t), l(t) или f(t), можно найти две другие.

Если необходимо оценить условную вероятность, можно воспользоваться следующим выражением:

P(t 1 ; t 2) = exp(- l(t) dt).

Если РЭА содержит N последовательно соединенных однотипных эле­ментов, то l N (t) = Nl(t).

Средняя наработка на отказ Т ср и вероятность безотказной работы P(t) связаны зависимостью

Т ср = P(t) dt.

По статистическим данным

Т ср = Dn i t ср i , t ср i = (t i +t i +1)/2, m = t/Dt

где Δn i - количество отказавших изделий за интервал времени Δt ср i = (t i +1 -t i);

t i , t i +1 - соответственно время в начале и конце интервала испытаний (t 1 =0);

t - интервал времени, за который отказали все изделия; m - число времен­ных интервалов испытаний.

Средняя наработка до отказа To - это математическое ожидание наработки объекта до первого отказа:

To=1/l=1/(N*li), или, отсюда: l=1/To

Время безотказной работы равно обратной величине интенсивности отказов.

Например: технология элементов обеспечивает среднюю интенсивность отказов li=1*10 -5 1/ч. При использовании в объекта N=1*10 4 элементарных деталей суммарная интенсивность отказов lо= N*li=10 -1 1/ч. Тогда среднее время безотказной работы объекта To=1/lо=10 ч. Если выполнить объекта на основе 4-х больших интегральных схем (БИС), то среднее время безотказной работы объекта увеличится в N/4=2500 раз и составит 25000 ч. или 34 месяца или около 3 лет.

Пример. Из 20 неремонтируемых изделий в первый год эксплуатации отка­зало 10, во второй – 5, в третий - 5. Определить вероятность безотказной работы, частоту отка­зов, интенсивность отказов в первый год эксплуатации, а также среднюю наработку до первого отказа.

P(1)=(20-10)/20 = 0.5,

P(2)=(20-15)/20 = 0.25, P(1;2)= P(2)/ P(1) = 0.25/0.5 = 0.5,

P(3)=(20-20)/20 = 0, P(2;3)= P(3)/ P(2) = 0/0.25 = 0,

f(1)=10/(20·1) = 0.5 г -1 ,

f(2)=5/(20·1) = 0.25 г -1 ,

f(3)=5/(20·1) = 0.25 г -1 ,

l(1)=10/[(20*1] = 0.5 г -1 ,

l(2)=5/[(10*1] = 0.5 г -1 ,

l(3)=5/[(5*1] = 1 г -1 ,

Т ср = (10·0.5+5·1.5+5·2.5)/20 = 1.25 г.

Правильно понимать физическую природу и сущность отказов очень важно для обоснованной оценки надежности технических устройств. В практике эксплуатации различают три характерных типа отказов: приработочные, внезапные и отказы из-за износа. Они различаются физической природой, способами предупреждения и устранения и проявляются в различные периоды эксплуатации технических устройств.

Отказы удобно характеризовать «кривой жизни» изделия, которая иллюстрирует зависимость интенсивности происходящих в нем отказов l(t) от времени t. Такая идеализированная кривая для РЭА приведена на рисунке 7.2.1.


Рис. 7.2.1.

Она имеет три явно выраженных периода: приработки I, нормальной эксплуатации II, и износа III.

Приработочные отказы наблюдаются в первый период (0 - t 1) эксплуатации РЭА и возникают, когда часть элементов, входящих в состав РЭА, являются бракованными или имеют скрытые дефекты. Физический смысл приработочных отказов может быть объяснен тем, что электрические и механические нагрузки, приходящиеся на компоненты РЭА в приработочный период, превосходят их электрическую и механическую прочность. Поскольку продолжительность периода приработки РЭА определяется в основном интенсивностью отказов входящих в ее состав некачественных элементов, то продолжительность безотказной работы таких элементов обычно сравнительно низка, поэтому выявить и заменить их удается за сравнительно короткое время.

В зависимости от назначения РЭА период приработки может продолжаться от нескольких до сотен часов. Чем более ответственное изделие, тем больше продолжительность этого периода. Период приработки составляет обычно доли и единицы процента от времени нормальной эксплуатации РЭА во втором периоде.

Как видно из рисунка, участок «кривой жизни» РЭА, соответствующий периоду приработки I, представляет собой монотонно убывающую функцию l(t), крутизна которой и протяженность во времени тем меньше, чем совершеннее конструкция, выше качество ее изготовления и более тщательно соблюдены режимы приработки. Период приработки считают завершенным, когда интенсивность отказов РЭА приближается к минимально достижимой (для данной конструкции) величине l min в точке t 1 .

Приработочные отказы могут быть следствием конструкторских (например, неудачная компоновка), технологических (некачественное выполнение сборки) и эксплуатационных (нарушение режимов приработки) ошибок.

С учетом этого, при изготовлении изделий предприятиям рекомендуется проводить прогон изделий в течение нескольких десятков часов работы (до 2-5 суток) по специально разработанным методикам, в которых предусматривается работа при влиянии различных дестабилизирующих факторов (циклы непрерывной работы, циклы включений-выключений, изменения температуры, напряжения питания и пр.).

Период нормальной эксплуатации. Внезапные отказы наблюдаются во второй период (t 1 -t 2) эксплуатации РЭА. Они возникают неожиданно вследствие действия ряда случайных факторов, и предупредить их приближение практически не представляется возможным, тем более что к этому времени в РЭА остаются только полноценные компоненты. Однако и такие отказы все же подчиняются определенным закономерностям. В частности, частота их появления в течение достаточно большого промежутка времени одинакова в однотипных классах РЭА.

Физический смысл внезапных отказов может быть объяснен тем, что при быстром количественном изменении (обычно - резком увеличении) какого-либо параметра в компонентах РЭА происходят качественные изменения, в результате которых они утрачивают полностью или частично свои свойства, необходимые для нормального функционирования. К внезапным отказам РЭА относят, например, пробой диэлектриков, короткие замыкания проводников, неожиданные механические разрушения элементов конструкции и т. п.

Период нормальной эксплуатации РЭА характеризуется тем, что интенсивность ее отказов в интервале времени (t 1 -t 2) минимальна и имеет почти постоянное значение l min » const. Величина l min тем меньше, а интервал (t 1 – t 2) тем больше, чем совершеннее конструкция РЭА, выше качество ее изготовления и более тщательно соблюдены режимы эксплуатации. Период нормальной эксплуатации РЭА общетехнического назначения может продолжаться десятки тысяч часов. Он может даже превышать время морального старения аппаратуры.

Период износа. В конце строка службы аппаратуры количество отказов снова начинает нарастать. Они в большинстве случаев являются закономерным следствием постепенного износа и естественного старения используемых в аппаратуре материалов и элементов. Зависят они главным образом от продолжительности эксплуатации и «возраста» РЭА.

Средний срок службы компонента до износа - величина более определенная, чем время возникновения приработочных и внезапных отказов. Их появление можно предвидеть на основании опытных данных, полученных в результате испытаний конкретной аппаратуры.

Физический смысл отказов из-за износов может быть объяснен тем, что в результате постепенного и сравнительно медленного количественного изменения некоторого параметра компонента РЭА этот параметр выходит за пределы установленного допуска, полностью или частично утрачивает свои свойства, необходимые для нормального функционирования. При износе происходит частичное разрушение материалов, при старении - изменение их внутренних физико-химических свойств.

К отказам в результате износа относят потерю чувствительности, точности, механический износ деталей и др. Участок (t 2 -t 3) «кривой жизни» РЭА, соответствующий периоду износа, представляет собой монотонно возрастающую функцию, крутизна которой тем меньше (а протяженность во времени тем больше), чем более качественные материалы и комплектующие изделия использованы в аппаратуре. Эксплуатация аппаратуры прекращается, когда интенсивность отказов РЭА приблизится к максимально допустимой для данной конструкции.

Вероятность безотказной работы РЭА. Возникновение отказов в РЭА носит случайный характер. Следова­тельно, время безотказной работы есть случайная величина, для описания которой используют разные распределения: Вейбулла, экспоненциальный, Пуассона.

Отказы в РЭА, содержащей большое число однотипных неремонтируе­мых элементов, достаточно хорошо подчиняются распределению Вейбулла. Экспоненциальное распределение основано на предположении постоянной во времени интенсивности отказов и успешно может быть использовано при расчетах надежности аппаратуры одноразового применения, содержащей большое число неремонтируемых компонентов. При длительной работе РЭА для планирования ее ремонта важно знать не вероятность возникновения отказов, а их число за определенный период эксплуатации. В этом случае применяют распределение Пуассона, позво­ляющее подсчитать вероятность появления любого числа случайных собы­тий за некоторый период времени. Распреде­ление Пуассона применимо для оценки надежности ремонтируемой РЭА с простейшим потоком отказов.

Вероятность отсутствия отказа за время t составляет Р 0 = ехр(-t), а вероятность появления i отказов за то же время P i =  i t i exp(-t)/i!, где i = 0, 1, 2, ..., n - число отказов.

7.3. Структурная надежность аппаратуры

Структурная надежность любого радиоэлектронного аппарата, в том числе и РЭА, это его результирующая надежность при известной структурной схеме и известных значениях надежности всех элементов, составляющих структурную схему.

При этом под элементами понимаются как интегральные микросхемы, резисторы, конденсаторы и т. п., выполняющие определенные функции и включенные в общую электрическую схему РЭА, так и элементы вспомогательные, не входящие в структурную схему РЭА: соединения паяные, разъемные, элементы крепления и т. д.

Надежность указанных элементов достаточно подробно изложена в специальной литературе. При дальнейшем рассмотрении вопросов надежности РЭА будем исходить из того, что надежность элементов, составляющих структурную (электрическую) схему РЭА, задана однозначно.

Количественные характеристики структурной надежности РЭА.

Для их нахождения составляют структурную схему РЭА и указывают элементы устройства (блоки, узлы) и связи между ними.

Затем производят анализ схемы и выделяют элементы и связи, которые определяют выполнение основной функции данного устройства.

Из выделенных основных элементов и связей составляют функциональную (надежностную) схему, причем в ней выделяют элементы не по конструктивному, а по функциональному признаку с таким расчетом, чтобы каждому функциональному элементу обеспечивалась независимость, т. е. чтобы отказ одного функционального элемента не вызывал изменения вероятности появления отказа у другого соседнего функционального элемента. При составлении отдельных надежностных схем (устройств узлов, блоков) иногда следует объединять те конструктивные элементы, отказы которых взаимосвязаны, но не влияют на отказы других элементов.

Определение количественных показателей надежности РЭА с помощью структурных схем дает возможность решать вопросы выбора наиболее надежных функциональных элементов, узлов, блоков, из которых состоит РЭА, наиболее надежных конструкций, панелей, стоек, пультов, рационального порядка эксплуатации, профилактики и ремонта РЭА, состава и количества ЗИП.


Похожая информация.


Надежность и живучесть бортовых вычислительных систем (БЦВС).

Надежность – это свойство изделий выполнять требуемые функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени.

Живучесть - способность вычислительной системы выполнять свои основные функции, несмотря на полученные повреждения и вышедшие из строя элементы аппаратуры.

К надежности и живучести БУВМ и БЦВС предъявляются более жесткие требования, чем к надежности и живучести универсальных и персональных ЭВМ. При отказе БЦВМ нарушается работоспособность системы, и не выполняются поставленные задачи, что может привести к непоправимым последствиям, в том числе и к человеческим жертвам.

Повторное решение задачи после восстановления БЦВМ и БЦВС часто невозможно. Так, например, при сбое в работе БЦВС зенитно-ракетного комплекса будет уничтожен обороняемый объект. И, если вы в короткий срок восстановите работу системы, то разрушения не удастся вернуть так же, как и потерянные жизни. Сбой в авионике может привести к крушению самолета или самопроизвольному сходу ракет. В этом случае восстановление работы БЦВС так же не позволит исправить последствия ошибки.

Обеспечение высокой надежности и живучести БЦВС усложняется условиями работы аппаратуры на борту при больших колебаниях температуры, влажности, действии механических нагрузок и в условии высокой запыленности. Так же ограничение накладывается на габариты и массу аппаратуры. Это в основном относится к авиации, но так же большое значение имеет и для БЦВС других направлений.

Таким образом, проблема надежности и живучести БЦВМ и БЦВС имеет ряд особенностей, обусловленных своеобразием структуры БЦВМ и характером выполняемых ими функций.

Задача обеспечения в сложной системе высокой надежности и живучести может оказаться весьма дорогостоящей, сложной и требующей больших затрат времени, хотя затруднения с выпуском продукции и проблемы, возникающие во время эксплуатации, в связи с необходимостью обеспечения и поддержания требуемого уровня надежности, могут вызвать еще большие затруднения.

Например, при уменьшении надежности ракетной системы на 10% для обеспечения одной и той же степени поражения цели потребуется увеличение, по меньшей мере, на 10% фактического количества боевых ракет. Для этих ракет нужны дополнительные пусковые площадки, испытательная аппаратура, оборудование для пуска, обслуживающий персонал и вспомогательное оборудование, что связано с большими затратами денежных средств и времени.

Чем сложнее структура вычислительной системы, тем труднее обеспечить надежность и живучесть. Следует заметить, что большинство отказов, имевших место при пусках управляемых ракет и искусственных спутников в США, не было вызвано неисправностью какого-либо экзотического устройства, конструкция которого ускорила прогресс современного уровня техники. Напротив, многие отказы были вызваны неисправностью функциональных и конструктивных элементов ранее апробированной конструкции. Иногда элементы были изготовлены неправильно, а в других случаях имели место ошибки в работе программистов или обслуживающего персонала. Нет такой мелочи, которая была бы слишком ничтожной для того, чтобы не оказаться возможной причиной отказа. Высокие потенциальная и практически достижимая надежности в значительной степени являются результатом глубокого и пристального внимания к мелочам.

Проблема повышения надежности и отказоустойчивости свойственна не только БЦВС, но и коммерческой аппаратуре. Например, в кластере Google в среднем происходит отказ 1 компьютера в день (то есть за год аварии происходят примерно на 3% компьютеров). Конечно, за счет резервирования данных и кода эти сбои пользователям незаметны, но для программиста они являются большой проблемой.

Случай, когда вычислительная система или ее часть вышли из строя, и дальнейшая работа невозможна без ремонта - называется отказом.

Теория надежности различает 3 характерных признака отказов, которые могут быть присуще аппаратуре и проявляются без всякого воздействия со стороны людей.

1. Приработные отказы. Эти отказы происходят в течение раннего периода эксплуатации и в большинстве случаев вызваны недостатком технологии производства и дефектами при изготовлении элементов вычислительных систем. Эти отказы могут быть исключены процессом отбраковки, приработки и технологического тестирования готового изделия.

2. Дефектные или постепенные отказы. Это - отказы, возникающие из-за износа отдельных параметров или частей аппаратуры. Они характеризуются постепенным изменением параметров изделия или элементов. В начале эти отказы могут проявляется как временные сбои. Однако, по мере того, как износ возрастает, временные сбои превращаются в серьезные отказы аппаратуры. Эти отказы являются признаком старения БЦВС. Они частично могут быть устранены при правильной эксплуатации, хорошей профилактике и своевременной замене изношенных элементов аппаратуры.

3. Внезапные или катастрофические отказы. Эти отказы не могут быть устранены ни при отладке аппаратуры, ни правильным обслуживанием, ни профилактикой. Внезапные отказы возникают случайно, никто не может их предсказать, однако, они подчиняются определенным законам вероятности. Так что частота внезапных отказов в течение достаточно большого периода времени становится примерно постоянной. Это происходит в любой аппаратуре. Примером случайных отказов является обрыв или замыкание цепей. Такой отказ приводит, обычно, к тому, что на выходе устанавливается постоянно либо 0, либо 1. При возникновении случайных отказов необходимо заменять элементы, в которых они произошли. Для этого вычислительная система должна быть ремонтопригодной и позволять быстро проводить профилактические работы в полевых условиях.

В отдельную группу можно выделить перемежающиеся отказы или сбои. Под сбоем подразумевается кратковременное нарушение нормальной работы БЦВМ, при котором один или несколько ее элементов, при выполнении одной или нескольких смежных операции, дает случайный результат. После сбоя вычислительная система может нормально функционировать в течение длительного времени.

Причиной возникновения сбоев могут быть электромагнитные наводки, механические воздействия и др. Часто сбои не приводит к выходу из строя комплекса, а только изменяют ход работы программного обеспечения из-за неверного выполнения одной или нескольких команд, что может привести к катастрофическим последствиям. Отличие сбоев от отказов в том, что при обнаружении последствий от сбоя, необходимо восстанавливать не аппаратуру, а информацию, искаженную сбоем.

Рассказывая о сбоях, необходимо упомянуть о, так называемых, Шрёдинбагах. Шрёдинбаг – это ошибка, при которой вычислительная система долгое время функционирует нормально, однако, при определенных условиях, например, задании нестандартных параметров работы, возникает сбой. При анализе этого сбоя оказывается, что программное обеспечение вычислительной системы имеет принципиальную ошибку, из-за которой оно в принципе не должно было функционировать.

Шрёдинбаг может быть образован сложной комбинацией парных ошибок (когда ошибка в одном месте компенсируется ошибкой противоположного действия в другом месте). При определенном стечении обстоятельств баланс ошибок разрушается, что приводит к парализации работы.

Таким образом, для БЦВС характерно еще одно свойство, определяющее ее надежность – безошибочность или достоверность функционирования. Следовательно, надежность БЦВС – это совокупность безотказности, достоверности функционирования, живучести и ремонтопригодности.

В качестве параметров надежности применяют:

1. Интенсивность отказов –

2. Средняя наработка на отказ –

3. Вероятность безотказной работы в течение заданного времени – Р

4. Вероятность отказа – Q

Интенсивность отказов

Интенсивность отказов – это частота, с которой происходят отказы. Если аппаратура состоит из нескольких элементов, то ее интенсивность отказов равна сумме интенсивности отказов всех элементов, отказы которых приводят к неисправности оборудования.

Кривая интенсивности отказов, в зависимости от времени эксплуатации, изображена на рисунке ниже.

При начале эксплуатации (в момент времени t = 0) вводится в действие большое количество элементов. Эта совокупность элементов в начале может имеет большую интенсивность отказов, за счет дефектных образцов. Поскольку дефектные элементы отказывают один за другим, интенсивность отказов относительно быстро уменьшается в течение периода приработки и становится приблизительно постоянной к моменту нормальной эксплуатации (Т норм), когда дефектные элементы уже отказали, и были заменены на работоспособные.

Совокупность элементов, прошедших период приработки, имеет самый низкий уровень отказов, который сохраняется примерно постоянным до начала выхода из строя элементов, из-за износа (Т износа). С этого момента интенсивность отказов начинает возрастать.

Средняя наработка на отказ

Средняя наработка на отказ – это отношение общего отработанного времени к общему числу отказов. В течение периода нормальной эксплуатации, когда интенсивность отказов примерно постоянна, средняя наработка на отказ представляет собой величину обратную интенсивности отказов:

Вероятность безотказной работы.

Вероятностью безотказной работы называется вероятное или ожидаемое число устройств, которое будет безотказно функционировать в течение заданного периода времени:

Эта формула справедлива для всех устройств, которые прошли приработку, но не испытывают влияние износа. Следовательно, время t не может превышать периода нормальной эксплуатации устройств.

График, показывающий вероятность безотказной работы в зависимости от времени нормальной эксплуатации, приведен ниже:

Вероятность отказа.

Вероятность отказа – это величина обратная вероятности безотказной работы.

Номинальная интенсивность отказов.

Элементы аппаратуры проектируют так, чтобы они могла выдерживать определенные номинальные: напряжение, силу тока, температуру, вибрации, влажность и так далее. Когда аппаратура в процессе работы подвергается влиянию таких воздействий, наблюдается некая определенная интенсивность отказов. Ее называют номинальной интенсивностью отказов.

При увеличении общей рабочей нагрузи или некоторых частных нагрузок, или вредных воздействий окружающей среды сверх номинальных уровней, интенсивность отказов возрастает довольно резко по сравнению со своим номинальным значением. И наоборот, интенсивность отказов уменьшается, когда нагрузка становится ниже номинального уровня.

Например, если элемент должен работать при номинальном значении температуры 60 градусов, то путем понижения температуры, в результате применения принудительной системы охлаждения, можно снизить интенсивность отказов. Однако, если снижение температуры влечет за собой слишком большое увеличение количества элементов и веса аппаратуры, то более выгодным может оказаться выбор элементов с увеличенным номинальным значением рабочей температуры и применение их при температуре, ниже номинальной. В этом случае аппаратура может стать дешевле, а масса меньше (что принципиально при работе в летательном аппарате), чем при применении принудительной системы охлаждения.

Методы определения надежности БЦВС.

Когда проектируются и создаются новые изделия механическими, электрическими, химическими или другими измерениями, нельзя определить значение интенсивности отказов. Интенсивность отказов можно определить путем сбора статистических данных, полученных при испытании на надежность этого или аналогичных изделий.

Вероятность безотказной работы в течение любого момента времени испытаний выражается формулой:

Интенсивность отказов определяется формулой:

При измерении интенсивности отказов необходимо поддерживать постоянное число элементов, участвующих в испытании, путем замены отказавших элементов новыми.

Таким образом, для получения данных о количественных характеристиках надежности аппаратуры, необходимо изготовить специальный образец аппаратуры для испытаний на надежность. Испытания на надежность должны проводиться в условиях, соответствующих реальным условиям эксплуатации оборудования по внешним воздействиям, периодичности включения и изменения параметров питания.


Типичная зависимость интенсивности отказов от времени: I - период приработки и отказов некачественных изделий; II - период нормальной эксплуатации; III - период старения (отказы вызваны износом деталей или старением материалов). Интенсивность отказов некоторых изделий (например, полупроводниковых приборов) не нарастает за всё время эксплуатации то есть, не имеет период старения, поэтому, иногда говорят, что их срок службы вечен.

Интенси́вность отка́зов - отношение числа отказавших объектов (образцов аппаратуры, изделий, деталей, механизмов, устройств, узлов и т. п.) в единицу времени к среднему числу объектов, исправно работающих в данный отрезок времени при условии, что отказавшие объекты не восстанавливаются и не заменяются исправными. Другими словами, интенсивность отказов численно равна числу отказов в единицу времени, отнесенное к числу узлов, безотказно проработавших до этого времени. Следующие определения интенсивности отказов эквивалентны:

λ (t) = n (t) N c p Δ t = n (t) [ N − n (t) ] Δ t = f (t) P (t) {\displaystyle \lambda (t)={\frac {n(t)}{N_{cp}\Delta t}}={\frac {n(t)}{\left\Delta t}}={\frac {f(t)}{P(t)}}}

где N {\displaystyle N} - общее число рассматриваемых изделий;
f (t) {\displaystyle f(t)} - скорость отказов - количество изделий, отказавших к моменту времени t {\displaystyle t} в единицу времени;
P (t) {\displaystyle P(t)} - количество изделий, не отказавших к моменту времени t {\displaystyle t} ;
n (t) {\displaystyle n(t)} - число отказавших образцов в интервале времени от t − (Δ t / 2) {\displaystyle t-(\Delta t/2)} до t + (Δ t / 2) {\displaystyle t+(\Delta t/2)} ;
- интервал времени;
N c p {\displaystyle {N_{cp}}} - среднее число исправно работающих образцов в интервале Δ t {\displaystyle \Delta t} : N c p = N i + N i + 1 2 {\displaystyle {N_{cp}}={\frac {N_{i}+N_{i+1}}{2}}}

где N i {\displaystyle N_{i}} - число исправно работающих образцов в начале интервала Δ t {\displaystyle \Delta t} ;
N i + 1 {\displaystyle N_{i+1}} - число исправно работающих образцов в конце интервала Δ t {\displaystyle \Delta t} .

Размерность интенсивности отказов обратна времени, обычно измеряется в 1/час.

Примеры

При испытании длительностью 3000 часов из 1000 изделий отказало 150. тогда интенсивность отказов этих изделий:

λ (3000) = 150 (1000 − 150) ⋅ (3000 − 0) ≈ 5 , 8824 ⋅ 10 − 5 {\displaystyle \lambda (3000)={\frac {150}{(1000-150)\cdot (3000-0)}}\approx 5,8824\cdot 10^{-5}} 1/час.

Например, средние значения интенсивностей отказов в период нормальной эксплуатации составляют:

Наиболее статистически надёжные данные по интенсивности отказов собраны для электронных компонентов.

  • Дискретные резисторы: от 1 ⋅ 10 − 9 {\displaystyle 1\cdot 10^{-9}} до 1/час.
  • Дискретные неэлектролитические конденсаторы : от до 1 ⋅ 10 − 8 {\displaystyle 1\cdot 10^{-8}} 1/час.
  • Электролитические конденсаторы : от 1 ⋅ 10 − 3 {\displaystyle 1\cdot 10^{-3}} до 1/час.
  • Полупроводниковые маломощные приборы (диоды, транзисторы) после приработки: от 1 ⋅ 10 − 6 {\displaystyle 1\cdot 10^{-6}} до 1/час.
  • Интегральные микросхемы в период нормальной эксплуатации: от 1 ⋅ 10 − 5 {\displaystyle 1\cdot 10^{-5}} до 1 ⋅ 10 − 7 {\displaystyle 1\cdot 10^{-7}} 1/час.
© 2024 Windows. Программы. Железо. Интернет. Полезно знать